Frazzled precision guides axons
نویسندگان
چکیده
منابع مشابه
Dscam guides embryonic axons by Netrin-dependent and -independent functions.
Developing axons are attracted to the CNS midline by Netrin proteins and other as yet unidentified signals. Netrin signals are transduced in part by Frazzled (Fra)/DCC receptors. Genetic analysis in Drosophila indicates that additional unidentified receptors are needed to mediate the attractive response to Netrin. Analysis of Bolwig's nerve reveals that Netrin mutants have a similar phenotype t...
متن کاملChemokine signaling guides axons within the retina in zebrafish.
Chemokines are a large family of secreted proteins that play an important role in the migration of leukocytes during hematopoiesis and inflammation. Chemokines and their receptors are also widely distributed in the CNS. Although recent investigations are beginning to elucidate chemokine function within the CNS, relatively little is known about the CNS function of this important class of molecul...
متن کاملTransmembrane sema4E guides branchiomotor axons to their targets in zebrafish.
Class 4 semaphorins are a large class of transmembrane proteins that contain a sema domain and that are expressed in the CNS, but their in vivo neural function is unknown. In zebrafish, the epithelial cells that line the pharyngeal arches express Sema4E. Extension of branchiomotor axons along the mesenchymal cells bounded by these epithelial cells suggests that Sema4E may act as a repulsive gui...
متن کاملDrosophila melanogaster Hedgehog cooperates with Frazzled to guide axons through a non-canonical signalling pathway
We report that the morphogen Hedgehog (Hh) is an axonal chemoattractant in the midline of Drosophila melanogaster embryos. Hh is present in the ventral nerve cord during axonal guidance and overexpression of hh in the midline causes ectopic midline crossing of FasII-positive axonal tracts. In addition, we show that Hh influences axonal guidance via a non-canonical signalling pathway dependent o...
متن کاملEphB2 Guides Axons at the Midline and Is Necessary for Normal Vestibular Function
Mice lacking the EphB2 receptor tyrosine kinase display a cell-autonomous, strain-specific circling behavior that is associated with vestibular phenotypes. In mutant embryos, the contralateral inner ear efferent growth cones exhibit inappropriate pathway selection at the midline, while in mutant adults, the endolymph-filled lumen of the semicircular canals is severely reduced. EphB2 is expresse...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nature
سال: 2000
ISSN: 0028-0836,1476-4687
DOI: 10.1038/35022694